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1 Introduction

Programming languages that rely on garbage collection have existed since
the late 1950’s [27]. Though the benefits of garbage collection for program
simplicity and robustness are well-known and accepted, most software de-
velopers have continued to rely on traditional explicit memory management,
largely because of performance concerns. Only recently has the wide accep-
tance of the Java programming language [15] allowed garbage collection
to enter the mainstream and be used in large systems.

Developers have been skeptical about garbage collection for two reasons:
throughput and latency. That is, they fear that collection will either slow
down the end-to-end performance of their systems, or induce long collection
pauses, or both. Large increases in computing power have not eliminated
these concerns, since they are typically offset by corresponding increases in
memory requirements.

Generational garbage collection techniques [23, 28] can address both per-
formance concerns. They split the heap into generations according to object
age. Concentrating collection activity on the “young” generation increases
throughput, because (in most programs) young objects are more likely to
be garbage, so more free space is recovered per unit of collection work.
Since the young generation is typically small relative to the total heap size,

∗Most of this work took place during the author’s summer internship at Sun Microsys-

tems Laboratories in the summer of 1998.
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young-generation collections are usually brief, addressing the latency con-
cern. However, objects that survive a sufficiently large number of young-
generation collections are considered long-lived, and are “promoted” into
an older generation. Even though the older generation is typically larger,
it will eventually be filled and require collection. Old-generation collection
has latency and throughput similar to full-heap collection; thus, generational
techniques only postpone, but do not solve, the problem.

In this paper we present a garbage collection algorithm that has been
designed to serve as the oldest generation of a generational memory system.
It attempts to decrease the worst-case garbage collection pause time, while
taking advantage of the benefits of a generational system. It is an adaptation
of the “mostly parallel” algorithm of Boehm et al. [6]. It usually operates
concurrently with the mutator, only occasionally suspending the mutator
for short periods.

1.1 A Note on Terminology

In this paper, we call a collector concurrent if it can operate interleaved with
the mutator, either truly concurrently, or by working in small increments,
i.e., piggy-backed on a frequent operation (such as object allocation). We
propose to contrast this with parallel collectors, which accomplish collection
using multiple cooperating threads, and can therefore achieve parallel speed-
ups on shared-memory multiprocessors.

It is unfortunate that this terminology clashes with that used by Boehm
et al. [6], since they use “parallel” for the concept we have named “con-
current.” The choice is arbitrary; a local tradition led to the choice we
make. Thus, we use “mostly concurrent” to mean what Boehm et al. termed
“mostly parallel.”

1.2 Paper Overview

Section 2 briefly describes the platform on which we based our implementa-
tion and experiments, and Section 3 describes the original mostly-concurrent
algorithm. Our adaptation of this algorithm is described in Section 4, with
Section 5 containing the results of the experiments that we undertook in
order to evaluate our implementation. Finally, related work on incremental
garbage collectors is given in Section 6 and the conclusions and future work
in Section 7.
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Figure 1: Concrete example of the operation of the original mostly-
concurrent garbage collector.

2 Experimental Platform

The Sun Microsystems Laboratories Virtual Machine for Research, hence-
forth ResearchVM, is a high performance Java virtual machine developed
by Sun Microsystems. This virtual machine has been previously known as
the “Exact VM”, and has been incorporated into products; for example,
the Java 2 SDK (1.2.1 05) Production Release, for the Solaris operating
environment.1 It employs an optimising just-in-time compiler [10] and a fast
synchronisation mechanism [2].

More relevantly, it features high-performance exact (i.e., non-conservative
[7], also called precise) memory management [1]. The memory system is sep-
arated from the rest of the virtual machine by a well-defined GC Interface
[30]. This interface allows different garbage collectors to be “plugged in”
without requiring changes to the rest of the system. A variety of collec-
tors implementing this interface have been built. In addition to the GC
interface, a second layer, called the generational framework, facilitates the
implementation of generational garbage collectors [28, 21, 31].

One of the authors learned these interfaces and implemented a garbage
collector in a matter of weeks, so there is some evidence that it is relatively
easy to implement to the interfaces described above.

1Currently available at http://www.sun.com/solaris/java.
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3 Mostly-concurrent Collection

The original mostly-concurrent algorithm, proposed by Boehm et al. [6], is a
concurrent “tricolor” collector [11]. It uses a write barrier to cause updates
of fields of heap objects to shade the containing object gray. Its main inno-
vation is that it trades off complete concurrency for better throughput, by
allowing root locations (globals, stacks, registers), which are usually updated
more frequently than heap locations, to be written without using a barrier
to maintain the tricolor invariant. The algorithm suspends the mutator to
deal properly with the roots, but usually only for short periods. In more
detail, the algorithm is comprised of four phases:

• Initial marking pause. Suspend all mutators and record all ob-
jects directly reachable from the roots (globals, stacks, registers) of
the system.

• Concurrent marking phase. Resume mutator operation. At the
same time, initiate a concurrent marking phase, which marks a tran-
sitive closure of reachable objects. This closure is not guaranteed to
contain all objects reachable at the end of marking, since concurrent
updates of reference fields by the mutator may have prevented the
marking phase from reaching some live objects.

To deal with this complication, the algorithm also arranges to keep
track of updates to reference fields in heap objects. This is the only
interaction between the mutator and the collector.

• Final marking pause. Suspend the mutators once again, and com-
plete the marking phase by marking from the roots, considering mod-
ified reference fields in marked objects as additional roots. Since such
fields contain the only references that the concurrent marking phase
may not have observed, this ensures that the final transitive closure
includes all objects reachable at the start of the final marking phase.
It may also include some objects that became unreachable after they
were marked. These will be collected during the next garbage collec-
tion cycle.

• Concurrent sweeping phase. Resume the mutators once again,
and sweep concurrently over the heap, deallocating unmarked objects.
Care must be taken not to deallocate newly-allocated objects. This
can be accomplished by allocating objects “live” (i.e., marked), at least
during this phase.
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This description abstracts somewhat from that given by Boehm et al. Track-
ing individual modified fields is the finest possible tracking granularity; note
that this granularity can be coarsened, possibly trading off decreased accu-
racy for more efficient (or convenient) modification tracking. In fact, Boehm
et al. use quite a coarse grain, as discussed in Section 4.2. Also, the initial
marking phase can be performed concurrently without compromising cor-
rectness; this is easier in a conservative system than in an exact collector,
since the latter must halt mutator threads to properly interpret mutator
thread stack frames.

The algorithm assumes a low mutation rate of reference-containing fields
in heap objects; otherwise, the final marking phase will have to rescan
many dirty reference-containing fields, leading to a long, possibly disruptive,
pause. Even though some programs will break this assumption, Boehm et
al. report that in practice this technique performs well, especially for inter-
active applications [6]. Also, Section 4.9 describes a technique useful when
an application’s mutation rate is high.

3.1 A Concrete Example

Figure 1 illustrates the operation of the mostly-concurrent algorithm. In
this simple example, the heap contains 7 objects and is split into 4 pages.
During the initial marking pause (not illustrated), all 4 pages are marked as
clean and object a is marked live, since it is reachable from a thread stack.

Figure 1a shows the heap halfway through the concurrent marking phase.
Objects b, c, and e have been marked. At this point, the mutator performs
two updates: object g drops its reference to d, and object b has its reference
field, which pointed to c, overwritten with a reference to d. The result of
these updates is illustrated in Figure 1b. Also note that the updates caused
pages 1 and 3 to be dirtied.

Figure 1c shows the heap at the end of the concurrent marking phase.
Clearly, the marking is incomplete, since a marked object b points to an
unmarked object d. This is dealt with during the final marking pause: all
marked objects on dirty pages (pages 1 and 3) are rescanned. This causes b

to be scanned, and thus object d to be marked. Figure 1d shows the state
of the heap after the final marking pause, with marking now complete. A
concurrent sweeping phase follows, and will reclaim the unmarked object f.

Objects such as f that are unreachable at the beginning of a garbage
collection cycle are guaranteed to be reclaimed. Objects such as c, however,
that become unreachable during a collection cycle, are not guaranteed to be
collected in that cycle, but will be collected in the next.

5



4 Mostly-concurrent Collection in a Generational

System

This section describes our generational mostly-concurrent garbage collector
in detail, and records some of the decisions we took during its design and
implementation. Whenever possible, we also present alternative solutions
that might be more appropriate for different systems.

Most aspects of the design are independent of the use of the collector as
a generation in the generational framework, and we will describe these first.
Later, we will describe complications specific to the use of the collector in a
generational context.

4.1 The Allocator

The default configuration of the ResearchVM uses a young generation that
performs copying collection, and an older generation that performs mark-
sweep collection, with a compaction pass [21, 31] to enable efficient allocation
later. We will refer to this collector implementation as mark-compact. The
object relocation implied by compaction requires updating of references to
the relocated objects; this reference updating is difficult to perform concur-
rently. Therefore, mostly-concurrent collection does not attempt relocation.
Thus, its allocator uses free lists, segregated by object size, with one free list
per size for small objects (up to 100 4-byte words) and one free list per group
of sizes for larger objects (these groups were chosen using a Fibonacci-like se-
quence). Note that most mutator allocation occurs in the young generation,
which, because of its use of copying collection, supports efficient linear allo-
cation. Only the usually small fraction of objects that survive long enough
to be promoted cause allocation in the less efficient old generation.

It can be argued that a smarter allocator with better speed / fragmen-
tation trade-offs could have been used. In fact, Johnstone and Wilson claim
that the segregated free-list allocation policy is one of the policies that cause
the worst fragmentation [20]. However, this work assumed explicit “on-line”
deallocation, as represented by C’s malloc/free interface. It is easier and
more efficient to coalesce contiguous free areas to decrease fragmentation in
an “off-line” garbage collector with a sweeping phase that iterates over the
entire heap.
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4.2 Using the Card Table

Generational garbage collection requires tracking of references from objects
in older generations to objects in younger generations. This is necessary
for correctness, since some young-generation objects may be unreachable
except through such references. A better scheme than simply traversing the
entire older generation is required, since that would make the work of a
young-generation collection similar to the work of a collection of the entire
heap.

Several schemes for tracking such old-to-young references have been used,
with different cost/accuracy tradeoffs. The generational framework of the
ResearchVM (see Section 2) uses a card table for this tracking [34, 17, 33].
A card table is an array of values, each entry corresponding to a subregion
of the heap called a card. The system is arranged so that each update of
a reference field within a heap object by mutator code executes a write
barrier that sets the card table entry corresponding to the card containing
the reference field to a dirty value.2 In compiled mutator code, the extra
code for card table update can be quite efficient: a two-instruction write
barrier proposed by Hölzle [16] is used.

One of the fundamental decisions of our design is to exploit the happy
coincidence that this efficient card-table-based write barrier can be used,
almost without modification, to perform the reference update tracking re-
quired for mostly-concurrent collection. Thus, using mostly-concurrent col-
lection for the old generation will add no extra mutator overhead beyond
that already incurred for the generational write barrier.

Boehm et al. used virtual memory protection techniques to track pointer
updates at virtual memory page granularity: a “dirty” page contains one or
more modified reference fields. Using a card-table-based write barrier has
several advantages over this approach.

• Less overhead. The cost of invoking a custom handler for mem-
ory protection traps is quite high in most operating systems. Hosk-
ing and Moss [18] found a five-instruction card-marking barrier to be
more efficient than a page-protection-based barrier; the two- or three-
instruction implementation used in ResearchVM will be more efficient
still.

• Finer-grained information. The granularity of a card table can be

2For efficiency, this is done without checking whether the reference is actually to an

object into the young generation – a dirty card table entry indicates the possibility of an

old-to-young pointer on the corresponding card.
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chosen according to an accuracy/space overhead tradeoff. The “card
size” in a virtual memory protection scheme is the page size, which is
chosen to optimize properties, such as efficiency of disk transfer, that
are completely unconnected with the concerns of garbage collection.
Generally, these concerns lead to pages that are larger than optimal
for reference update tracking, typically at least 4 Kbytes. In contrast,
the card size of ResearchVM is 512 bytes.3

• More accurate type information. The ResearchVM dirties a card
only when a field of a reference type on that card is updated. A
virtual-memory-based system cannot distinguish between updates of
scalar and reference fields, and thus may dirty more pages than are
necessary to track modified pointers. Furthermore, their approach was
conservative elsewhere, as well: it assumed all words were potential
pointers.

Hosking, Moss, and Stefanovic [17] present a detailed discussion of the trade-
offs between software and page-protection-based barrier implementations.
Their basic conclusion is that software mechanisms are more efficient than
those using virtual memory protection.

In fairness, we should note that the system of Boehm et al. was attempt-
ing to satisfy a further constraint not present in our system: accomplishing
garbage collection for uncooperative languages (C and C++) without com-
piler support. This constraint led to the conservative collection scheme [7]
on which the mostly-concurrent extension is based, and also favored the
use of the virtual-memory technique for reference update tracking, since
this technique required no modification of the mutator code. We should
also note that their system was also generational, albeit in a rather differ-
ent manner than ours, as described in [9]. This generational mark-sweep
system gets some of the benefits of “traditional” generational systems with
physically segregated generations. However, we believe that the latter are
more straightforward and probably more efficient. In particular, the copying
young generation used in the default configuration of our system provides
significantly more efficient allocation [3].

Adapting the card table for the needs of the generational mostly-concurrent
algorithm was straightforward. In fact, as discussed above, the write barrier
and card table data structure were left unchanged. However, we took care-
ful note of the fact that the card table is used in subtly different ways by

3Other systems for tracking modified references, such as remembered sets, can give even

more accurate information, but usually at the cost of greater space overhead and a more

expensive write barrier.
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Figure 2: The mod union table

two garbage collection algorithms that may be running simultaneously. The
mostly-concurrent algorithm requires tracking of all references updated since
the beginning of the current marking phase. Young-generation collection re-
quires identification of all old-to-young pointers. In the base generational
system, a young-generation collection scans all dirty old-space cards, search-
ing for pointers into the young generation. If none are found, there is no
need to scan this card in the next collection, so the card is marked as clean.
Before a young-generation collection cleans a dirty card, the information
that the card has been modified must be recorded for the mostly-concurrent
collector.

This is accomplished by adding a new data structure, the mod union
table, shown in Figure 2, which is so-named because it represents the union
of the sets of cards modified between each of the young-generation collections
that occur during concurrent marking. The card table itself contains a byte
per card in the ResearchVM; this allows a fast write-barrier implementation
using a byte store. The mod-union table, on the other hand, is a bit vector
with one bit per card. It therefore adds little space overhead beyond the
card table, and also enables fast traversal to find modified cards when the
table is sparsely populated. We maintain an invariant on the mod union and
card tables: any card containing a reference modified since the beginning
of the current concurrent marking phase either has its bit set in the mod
union table, or is marked dirty in the card table, or both. This invariant is
maintained by young-generation collections, which set the mod union bits
for all cards dirty in the card table before scanning those dirty cards.
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4.3 Marking Objects

Our concurrent garbage collector uses an array of external mark bits. This
bitmap contains one bit for every four-byte word in the heap. This use of
external mark bits, rather than internal mark bits in object headers, prevents
interference between mutator and collector use of the object headers.

Root scanning presents an interesting design choice, since it is influenced
by two competing concerns. As we described in Section 3, the mostly-
concurrent algorithm scans roots while the mutator is suspended. Therefore,
we would like this process to be as fast as possible. On the other hand,
any marking process requires some representation of the set of objects that
have been marked but not yet scanned (henceforth the to-be-scanned set).
Often this set is represented using some data structure external to the heap,
such as a stack or queue. A strategy that minimizes stop-the-world time
is simply to put all objects reachable from the roots in this external data
structure. However, since garbage collection is intended to recover memory
when that is a scarce resource, the sizes of such external data structures
are always important concerns. Since the Java language is multi-threaded,
the root set may include the registers and stack frames of many threads.
In our generational system, objects in generations other than the one being
collected are also considered roots.4 So the root set may indeed be quite
large, arguing against this simple strategy.

An alternative strategy that minimizes space cost is one that marks all
objects reachable from a root immediately on considering the root. Many
objects may be reachable from roots, but we place such objects in the to-be-
scanned set one at a time, minimising the space needed in this data structure
(because of roots) at any given time. While suitable for non-concurrent col-
lection, this strategy is incompatible with the mostly-concurrent algorithm,
since it accomplishes all marking as part of the root scan.

We use a compromise between these two approaches. The compromise
takes advantage of the use of an external marking bitmap. The root scan
simply marks objects directly reachable from the roots. This minimizes
the duration of the stop-the-world root scan, and imposes no additional
space cost, by using the mark bit vector to represent the to-be-scanned set.
The concurrent marking phase, then, consists of a linear traversal of the
generation, searching the mark bit vector for live objects. (This process
has cost proportional to the heap size rather than amount of live data, but

4Unidirectional promotion from younger into older generations ensures that garbage

cycles are eventually entirely within the the oldest generation, at which point they may

be collected.
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the overall algorithm already has that complexity because of the sweeping
phase). For every live object cur found, we push cur on a to-be-scanned
stack, and then enter a loop that pops objects from this stack and scans their
references, until the stack is empty. The scanning process for a reference
value ref (into the mostly-concurrent generation) works as follows:

• if ref points ahead of cur, the corresponding object is simply marked,
without being pushed on the stack; it will be visited later in the linear
traversal.

• if ref points behind cur, the corresponding object is both marked and
pushed on the stack.

b c* d ea

cur

Figure 3: Marking traversal example

Figure 3 illustrates this process. The marking traversal has just discovered
a marked object c*, whose address becomes the value of cur. Scanning c*
finds two outgoing references, to a and e. Object e is simply marked, since
its address follows cur. Object a is before cur, so it is both marked and
scanned. This leads to b, which is also before cur, so it too is marked and
scanned. Object b’s reference to d, however, only causes d to be marked,
since it follows cur, and will therefore be scanned later in the traversal.

This technique reduces demand on the to-be-scanned stack, since no
more than one object directly reachable from the root set is ever on the stack.
A potential disadvantage of this approach is the linear traversal searching
for live objects, which makes the algorithmic complexity of marking contain
a component proportional to the size of the generation, rather than just
the number of nodes and edges in the pointer graph. This is a practical
difficulty only if the cost of searching for marked objects outweighs the cost
of scanning them if when found, which will occur only if live objects are
sparse. Note that if live objects are sparse, the use of a bitmap allows
large regions without live objects to be skipped efficiently, by detecting zero
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words in the bit vector. A similar technique was used by Printezis [25] in
the context of a disk garbage collector.

4.4 The Sweeping Phase

When the concurrent marking phase is complete, a sweeping process must
identify all objects that are not marked as reachable, and return their storage
to the pool of available storage. The allocation process will often “split” a
free block, creating an allocated block and a remaining free block, both
smaller than the original free block. Therefore, to prevent the average block
size from continuously decreasing, the sweeping process must also perform
some form of coalescing, that is, combination of consecutive free chunks into
one larger free chunk.

In a non-concurrent free-list-based collector, sweeping and coalescing
are most easily accomplished by throwing away the existing free lists and
reconstructing them “from scratch” during the sweeping process. This will
not work, however, in a concurrent collector, which must be prepared to
satisfy allocation requests during sweeping.

Concurrent allocation complicates sweeping in two ways. First, a muta-
tor thread could be attempting to allocate from a free list while the sweeping
process is attempting to add to that free list. This contention is handled
fairly easily with mutual exclusion locks. More subtly, the sweeping process
could also be competing with mutator threads to remove blocks from free
lists. Consider a situation where blocks a, b, and c are contiguous. Block b
is on a free list; blocks a and c had been allocated to contain objects, but
both have been found to be unreachable. We wish to put the coalesced block
abc onto a free list. To do so, however, we must first remove block b from
its free list, or else we risk that storage being allocated for two purposes.

Mutual exclusion locks can still manage this competition. However, note
that this scenario places a new requirement on the free list data structures
of the heap: we must be able to delete an arbitrary block from its free list.
Allocation removes objects from free lists, but only at the heads of the lists.
While singly-linked free lists are efficient when free blocks are deleted only
from the head, deletion of arbitrary blocks favors doubly-linked free lists,
which allow this operation to be done in constant, rather than linear, time.
Note that this adds no space overhead, since the same memory is used to
contain object information when a block is allocated and free-list links when
it is not.5

5It does constrain the minimum block size to be at least three words, but this constraint

was already present in the system.
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4.5 The Garbage Collector Thread

Our system uses a dedicated garbage collector thread. This approach allows
us to take advantage of multiple CPUs. For example, a single-threaded pro-
gram can run on a dual processor machine and have most garbage collection
work accomplished on the second processor. Similarly, collection activity can
proceed while the mutator is inactive, for example, while performing I/O.
Boehm et al. also employ a garbage collector thread, implemented using the
Portable Common Runtime (PCR) system [29]. This system supports user-
level threads multiplexed onto “kernel threads” created by federating one or
more UNIX r© processes sharing a common address space to implement the
PCR process abstraction. They report successful testing of the system with
several such “kernel threads”, but their measurements were run with only a
single such “thread.”

We also decided to label the garbage collector thread as a “fake” muta-
tor thread, which means that it is suspended during young-generation col-
lections. This has two advantages: it does not slow down young-generation
collections, which need to be fast, and it minimizes any synchronisation with
the rest of the system (see Section 4.8).

4.6 Interaction with Young-Generation Collection

There are some ways in which our mostly-concurrent collector has been
optimized or modified to work as the older generation in a generational
collector. First, we recognize that, for most programs, a large majority
of allocation in the older generation will be done via promotion from the
young generation. (The remainder is “direct” allocation by the mutator in
the older generation, which usually occurs only for objects too large to be
allocated in the young generation). Promotion occurs while mutator threads
and the concurrent garbage collector thread are suspended, which simplifies
matters. We take advantage of this simplification by supporting a linear
allocation mode during young-generation collection. Linear allocation can be
considerably faster than free-list-based allocation (especially when doubly-
linked free lists are used), since fewer pointers are compared and modified.
When linear allocation mode is in force, we maintain linear allocation for
small allocation requests as long as there exist sufficiently large free chunks
from which to allocate. This significantly speeds up allocation for promotion,
which can be a major component of the cost of young-generation collection.

In the default configuration of the ResearchVM, the use of a compacting
older generation simplifies the implementation of one function required for

13



young-generation collection. One of the most elegant aspects of Cheney-
style copying collection [8] is that the set of objects still to be scanned are
contiguous. In a generational system, where some from-space objects may
be copied to to-space and others may be promoted to the older generation,
the promoted objects are also part of the to-be-scanned set. When the older
generation uses compaction, and thus linear allocation, the set of promoted-
but-not-yet-scanned objects is contiguous. However, in a non-compacting
collector, the promoted objects may not be contiguous. This complicates
the problem of locating them so that they may be scanned.

We solve this problem by representing the set of promoted-but-unscanned
objects with a linked list. Every promoted object was promoted from the
current from-space of the young generation, and the from-space version of
the object contains a forwarding pointer to the object’s new address in the
older generation. These from-space copies of the promoted objects are used
as the “nodes” of the linked list. The forwarding pointer indicates the ele-
ment of the set, and a subsequent header word is used as a “next” field.

4.7 Control Heuristics

Figure 4 shows the code executed by the garbage collector thread. The first
statement initializes initFrac, the the occupancy threshold that initiates a
new collection cycle. In the ResearchVM collector framework the user speci-
fies a desired heap occupancy (heapOccupancyFrac) to control heap expan-
sion. In program’s steady state, this fraction is occupied at the end of a col-
lection cycle; we start a new cycle when the fraction allocBeforeCycleFrac

of the free space has been allocated.
The thread wakes up periodically (SLEEP_INTERVAL is set to 50 ms) and

checks the generation occupancy. If this has reached the initFrac, a new
cycle starts with an initial marking pause. Then the concurrent marking
phase is executed, followed by concurrent precleaning (see Section 4.9), and
the final marking pause (see Section 3). Finally, the cycle is completed by the
concurrent sweeping phase, which reclaims all unmarked objects. Actually,
tests guard execution of the final marking pause and concurrent sweeping:
if the fraction of the heap marked is already too high, sweeping will not
reclaim sufficient storage to justify its cost. So neither step is performed if
the fraction of the heap marked exceeds 98%.

It is important to note that “maximum pause time” is not by itself a suf-
ficient measure of garbage collector intrusiveness. Consider an incremental
system that limits GC pauses to a relatively small maximum, say 50 ms. On
a uniprocessor, this may still allow garbage collection to be intrusive: if only
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initFrac = (1 - heapOccupancyFrac) *

allocBeforeCycleFrac;

while (TRUE) {

sleep(SLEEP_INTERVAL);

if (generationOccupancy() > initFrac) {

/* 1st stop-the-world phase */

initialMarkingPause();

concurrentMarkingPhase();

concurrentPreCleaningPhase();

if (markedPercentage() < 98%) {

/* 2nd stop-the-world phase */

finalMarkingPause();

if (markedPercentage() < 98%)

concurrentSweepingPhase();

}

}

}

Figure 4: Pseudo-code for the GC thread.

10 ms of mutator work is done between each of these GC pauses, the user
will observe the program running at only 20% of its normal speed during
garbage collection. The measurements we present later in this paper were
done on multiprocessors, with an extra processor available for garbage col-
lection work, and thus ignore this issue. However, the implementation does
have a set of heuristics aimed at controlling such GC intrusion on unipro-
cessors. These heuristics view concurrent collection as a race in which the
collector is trying to finish collection before mutator activity allocates the
free space available at the start of the collection. The collector thread ac-
complishes marking and sweeping in series of steps, sleeping after each step
for a period determined by the relative progress of collection and allocation.
The more quickly the program fills available space, then more frequently
collection activities occur.

Occasionally, despite these heuristics or the availability of an extra pro-
cessor, the collector thread will “lose the race:” a mutator thread will require
the completion of a concurrent collection in order to make progress. When
this happens, the remainder of the collection is performed non-concurrently.
This leads to longer pauses, but usually shorter than if the entire collection
had been performed with the world stopped. Alternatively, we could choose
to expand the heap in such situations; we are exploring heuristics to control
this behavior.
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4.8 Concurrency Issues

We have mentioned several concurrency issues already; for example, the
previous section discussed the management of concurrency between old-
generation allocation and sweeping. This section explores issues that remain.
As discussed previously, since we expect most old-generation allocation to
be done during young-generation collection, the decision to suspend old-
generation collection during young-generation collection (see Section 4.5)
handles many such concerns. But not all; mutator threads may still oc-
casionally allocate objects directly in the older generation, and the old-
generation collector thread must not be interrupted for young-generation
collection in critical sections where its data structures are inconsistent.

Object allocation in the older generation, whether direct or by promo-
tion, raises two issues. First, if the background collector is in a sweeping
phase, we must ensure consistent access not only to free lists, but also to
mark bits. If free block b is allocated during sweeping, we must prevent
the sweeping thread from reclaiming b as an allocated but unmarked block.
Thus, during sweeping we use an allocate-live policy: allocated blocks are
marked live in the bitmap. This marking must be coordinated with the
sweeping thread’s examination of the mark bits.

We also allocate live during marking, but for somewhat different reasons.
A viable alternative strategy would allocate unmarked objects. The final
marking pause would still reach a correct transitive closure: if an object
allocated during marking is reachable at the end of marking, then there
exists some path from a root to the object at the end of marking. Every such
path consists either entirely of unmarked objects allocated during marking,
or contains at least one marked object. In the former case, the final marking
pause will certainly mark the object. In the latter case, consider the last
marked object in the path. It must have been modified to become part of
the path after it was scanned (and thus after it was marked), or else the
next object on the path would have been marked as part of that scanning.
Thus, the modification that made it part of the path made the object dirty.
So the last marked object in the path must be dirty, meaning that marking
from live, dirty objects will lead to the object allocated during marking.

Thus, we could preserve correctness without allocating live during mark-
ing. It would even give a more accurate estimate of the set of objects reach-
able at the end of marking than the more conservative allocate-live strategy.
This extra accuracy would come at a cost in some cases, however. If signif-
icant numbers of objects are allocated during marking, and many of these
remain reachable but unmarked until the final marking pause, all of these
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will have to be marked in that final pause, potentially lengthening it enough
to make it intrusive. On the other hand, the allocate-live policy quickly cuts
off the marking process when it reaches objects allocated during marking.
Any of these objects that are actually unreachable will be collected during
the next collection cycle. Since eliminating intrusive collection interruptions
is a more important goal in this work than maximizing overall throughput,
we use the allocate-live policy during both marking and sweeping.

4.9 Concurrent Precleaning

We noted in section 3 that efficient mostly-concurrent collection requires a
low mutation rate for reference fields of heap objects. A program with a
high mutation rate will create many dirty objects that must be rescanned
during the final marking pause, making this pause intrusive.

Boehm et al. describe a technique that partially mitigates this problem,
which we have implemented. We call this technique concurrent precleaning.6

The observation is fairly simple: much of the work done for dirty objects in
the final marking phase could be done concurrently beforehand, as long as it
is done in a careful manner that preserves correctness. At the end of concur-
rent marking, some set of objects are dirty. Without stopping the mutator,
we find all such dirty objects; for each object, we mark the object clean, and
then transitively mark from the object. Correctness is maintained because
any further mutator updates still dirty the corresponding object and require
it to be processed in the final marking phase. The hope, however, is that the
concurrent cleaning process will take considerably less time than the concur-
rent marking phase that preceded it, allowing less time for the mutator to
dirty objects. Thus, the final marking phase will have less non-concurrent
work to do. Section 5.3 measures the effectiveness of this technique.

In further experiments (not included in those measurements) we ex-
tended concurrent precleaning in two ways. First, the original implemen-
tation of precleaning worked only on the the mod-union table, assuming
that the number of modifications reflected in the card table proper between
two young-generation collections would be relatively small. This turned out
not to be true of real-world programs with high pointer mutation rates.
Therefore, we extended the technique to also preclean the card table. This
required the creation of a new card table value: dirty cards are changed
to precleaned, which are considered dirty by generational collection, but
considered clean in the final mark phase. Second, we iterate the precleaning

6Boehm et al. name their technique process M; we prefer a more descriptive term.
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process as long as the number of dirty cards encountered decreases by a
sufficient factor (currently 1/3), or until that number is sufficiently small
(currently, less than 1000). Both extensions were useful in meeting the de-
mands of the telecommunications application discussed in section 5.4.

5 Experimental Results

This collection technique is targeted at long-lived programs with large heaps.
Ideally, we would present measurements of several such programs. In the real
world, however, Java-technology-based implementations of such programs
are difficult to obtain, and the owners of those that exist are still somewhat
reluctant to have performance data quoted in public forums. Therefore,
to validate our approach, we built a synthetic program (gcold) that could
present a variety of loads to a garbage collector, including large heaps re-
quiring significant old-generation collections. We present measurements of
this application, and also a few “real” programs.

The gcold application allocates an array, each element of which points to
the root of a binary tree about a megabyte in size. An initial phase allocates
these data structures; then the program does some number of steps, main-
taining a steady-state heap size. Each step allocates some number of bytes
of short-lived data that will die in a young-generation collection, and some
number of bytes of nodes in a long-lived tree structure that replaces some
previously existing tree, making it garbage. Each step further simulates
some amount of mutator computation by several iterations of an busy-work
loop. Finally, since pointer-mutation rate is an important factor in the per-
formance of both standard generational and mostly-concurrent collection,
each step modifies some number of pointers (in a manner that preserves the
amount of reachable data). Command-line parameters control the amount
of live data in the steady state, the number of steps in the run, the number
of bytes of short-lived and long-lived data allocated in each step, the amount
of simulated work per step, and the number of pointers modified in a step.

5.1 Pauses as a Function of Heap Size

Table 1 compares the default non-concurrent older generation with the
mostly-concurrent older generation (MC in the table) on the gcold applica-
tion. The mostly-concurrent collector operates in a mode in which it assumes
that there is an extra processor available for garbage collection work. The
runs were performed on a Sun E3500 server, with 8 336 MHz UltraSPARC
processors sharing 2 Gbyte of memory. We show runs for various amounts
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Table 1: Default vs. mostly-concurrent for different heap sizes

old-gen live elapsed max young-gen pauses old-gen pauses
collector data time heap avg max total avg max total

(MB) (sec) (MB) (ms) (ms) (sec) (ms) (ms) (sec)

default 50 370 69 18 39 51.1 1298 1959 42.8
MC 50 334 93 24 70 69.8 14 39 1.2
default 100 351 189 19 36 54.1 2593 3491 20.7
MC 100 342 189 26 178 76.5 23 57 0.9
default 150 364 252 19 58 56.1 3985 6274 31.9
MC 150 347 286 28 361 81.7 27 67 0.7
default 200 363 315 20 42 57.5 4981 6763 29.9
MC 200 349 369 29 146 84.6 32 69 0.6
default 250 370 415 21 38 59.6 6944 10368 34.7
MC 250 356 498 31 145 91.1 41 105 0.6
default 300 362 500 21 39 61.8 7900 9938 23.7
MC 300 382 566 35 136 102.5 44 112 0.6

of steady-state live data; each run in this table has the same number of steps
(1000), ratio of short-lived to long-lived data (5:1), simulated mutator work
(5 units), and pointer mutation parameter (0). We show the elapsed time,
the final heap size (the maximum size is made large enough that the heap
can grow to its “natural size” for the collection scheme), and the average
and maxima of the young- and old-generation pause times.

Points to infer from this table include:

• Mostly-concurrent collection succeeds in dramatically decreasing old-
generation pause times. The maximum and average pauses for the
default old-generation collector increase with the amount of live data;
in contrast, the old generation pauses are much smaller for the mostly-
concurrent system, and grow less dramatically.

• The overall elapsed times are similar, with the mostly-concurrent col-
lector generally a little faster. This is actually an interesting balancing
act: more expensive allocation for promotion makes young-generation
collections more expensive, but off-loading old-generation collection
work onto a separate processor offsets this.

• Mostly-concurrent collection requires a somewhat larger heap. This
is necessary to allow collection activity to complete before concurrent
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allocation exhausts the available space.

The measurements in this section were deliberately chosen to show mostly-
concurrent collection in a good light, in the sense that the runs measured
used parameters for the gcold application that did not unduly challenge the
memory system. There are several parameters of mutator behavior that can
make mostly-concurrent collection less effective, and the following sections
explain and explore these. Note that we do not claim that our collector is the
best choice for all programs; these “best-case” measurements are intended to
suggest only that there exist programs with large heaps and stringent pause
time for which our collector functions well. The following measurements
explore the space of mutator behaviors in which the collector continues to
function well.

Table 2: Effect of promotion rate on pause times

promotion maximum old-gen pauses
rate heap size avg max

(Mbytes/sec) (Mbytes) (ms) (ms)

0.76 369 13 29
1.38 369 17 38
2.29 369 35 78
3.40 369 82 204
3.77 602 4199 10637
3.69 602 9602 24147

5.2 Pauses as a Function of Promotion Rate

In order for mostly-concurrent collection to maintain small pause times, it
must complete collections before allocation exhausts the available space – if
this happens, the remainder of the collection is performed non-concurrently,
causing a long pause. The collector is going as fast as it can; the muta-
tor determines the rate at which old-generation allocation (i.e., promotion)
occurs. The measurements summarized in table 1 performed enough simu-
lated mutator work between allocations to slow the rate of old-generation
allocation sufficiently so that this “race” was never lost. Still, these runs all
promoted at least 2.1 Mbytes per second.

Table 2 shows how old generation pauses and maximum heap size are
effected by the promotion rate (which was controlled by varying the amount
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of simulated mutator work per allocation). The live data parameter is kept
constant at 200 Mbyte, the remaining parameters are as in the previous
measurements. This table shows that there is a sharp cutoff point: pauses
stay roughly constant as long as the collector can finish before allocation
requires a collection to occur, but when the promotion rate is high enough,
it must do non-concurrent collection, with correspondingly high pause times.
Losing the race also, with current heuristics, causes the collector to grow the
heap size.

Table 3: Effect of pointer mutation rate on pause times

pointer final mark pauses final mark pauses
mutation rate no precleaning with precleaning

avg max avg max
Kptrs/sec (ms) (ms) (ms) (ms)

0 672 710 62 76
0.7 700 739 68 83

2.7/2.8 760 802 76 83
5.3/5.4 830 879 89 101

19.6/20.0 1064 1140 153 166
61.6/62.8 1450 1526 312 337

146.8/149.5 1776 1949 556 619

5.3 Pauses as a Function of Pointer Mutation Rate

A second mutator parameter that can lengthen the pause times of mostly-
concurrent collection is the rate at which the program updates pointers in
heap objects. In our implementation, each such update creates a dirty card
whose marked objects must be considered roots in the the final marking
phase. Recall that each “step” of the gcold application performs some
number of pointer writes, controlled by a command-line parameter. Table 3
shows the effect of varying this parameters. The gcold application counts
the number of pointer writes performed because of this parameter, and re-
ports the cumulative rate of such writes at the end. Note that this count is
only a lower bound on the number of pointer writes actually performed, since
the application may also perform some other non-counted pointer writes (for
example, as part of object construction.) Such writes use the same write
barrier, and may increase the number of dirty cards. When two numbers are
shown for the pointer mutation rate, the same input parameter gave slightly
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different rates for the runs with and without precleaning enabled. The live
data size was kept constant at 200 Mbyte, and the mutator work param-
eter was kept constant at a value which produced promotion rate between
0.94 and 2.31 Mbytes/sec. (The variation reflects the fact that the pointer
mutation operations added additional mutator work).

The table shows that final marking pauses are indeed quite dependent
on pointer mutation rate. The concurrent precleaning technique is quite ef-
fective at decreasing this dependency, at least at moderate pointer mutation
rates.

5.4 Validation: Real Programs

Table 4: Effect of pointer mutation rate on pause times

benchmark old-gen elapsed max old-gen pauses
collector time heap avg max total

(sec) (Mbyte) (ms) (ms) (ms)

compress default 46.4 15 27 71 356
compress mostly-concurrent 42.8 24 8 23 169
db default 69.4 13 312 312 312
db mostly-concurrent 68.6 19 25 64 101
javac default 37.9 13 301 412 4213
javac mostly-concurrent 40.0 19 102 754 2862
mtrt default 10.9 12 296 296 296
mtrt mostly-concurrent 11.1 16 17 30 34
jack default 25.2 8 42 44 84
jack mostly-concurrent 24.7 15 17 37 69

Table 4 compares the default non-concurrent collector with the mostly-
concurrent system on several programs from the SPECjvm98 benchmark
suite, in particular, those that perform old-generation collections given a 20
Mbyte maximum heap size. (This omits the jess and mpegaudio bench-
marks). As with the synthetic benchmarks, we find similar elapsed times,
and somewhat larger heaps and significantly smaller old-generation pause
times for the concurrent system. The javac benchmark explicitly requests
garbage collections; such requests are performed synchronously even in the
concurrent system. This accounts for the large maximum pause time for
javac.
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We also constructed a much larger workload for javac, compiling 2,740
source files from the standard Java libraries. These files contained 776,488
lines of code and producing 4,638 class files. We used this workload to
compare the concurrent and stop-world collectors. We fixed the heap size
at 139 Mbyte for both systems. Both systems performed similar numbers of
young-generation collections (between 1,140 and 1,150 in both cases), with
the young-generation collections of the concurrent system being somewhat
longer: we measured a 32.8 ms average and 117 ms maximum pause for the
concurrent collector, compared with a 24.6 ms average and 72 ms maximum
for the default system. This slowdown was partially offset by concurrency in
old-generation collections. The default system performed two old-generation
collections in this run, averaging 3.2 sec each. The concurrent system paused
90 times for old-generation collection, but the average duration of these
pauses was only 22 ms, with a 59 ms maximum and total time of 2.0 sec. For
this benchmark, the increased young-generation collection time outweighed
decreased old-generation time, so the elasped time for the concurrent system
was greater than for the default: 190.6 sec compared with 184.6. For a batch
process such as compilation, only the bottom-line elapsed time matters, so
the concurrent collector offers no advantage. However, these measurements
show that in applications where maximum pause time is an important factor,
the concurrent collector offers roughly equivalent throughput with much
smaller old-generation collection pauses.

Finally, we have also validated our collector with customer code. We
have worked with a telecommunications company that has a call-processing
application written in the Java language. Under expected workloads, it has
a steady-state live data size of several hundred megabytes, yet the customer
very much wishes to avoid pause times longer than one second. Stop-world
and incremental collectors already offered in Sun’s JVM products were un-
able to meet these requirements, but our concurrent collector has been able
to process the old-generation garbage in a timely manner. This application
updates pointers in old-generation at a relatively high rate; our concurrent
precleaning techniques were crucial in keeping remark pauses within ac-
ceptable ranges. This application has been deployed using a limited-release
version of the concurrent collector.

6 Related Work

For a good detailed introduction to garbage collection, the reader is referred
to two excellent publications, which touch most of the techniques mentioned
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in this paper: Jones and Lins’ book [21] and Wilson’s survey [31]. On
a related topic, Wilson, Johnstone, and others survey different dynamic
allocators and discuss the problem of memory fragmentation [32, 20].

A number of different techniques for incremental garbage collection have
been proposed in the past, and it would be impossible to present all of them
here, therefore we will only mention the most relevant ones.

Generational techniques attempt to visit newly-allocated objects more
often than longer-lived ones, in the hope that the former are more likely to
become garbage quickly. When this assumption holds, it is possible to collect
most garbage objects by just looking at a small area of the heap (the young-
generation) where objects are allocated, and hence minimize the garbage
collection pause time. Generational garbage collection was first proposed
by Lieberman and Hewitt [23], but Ungar reported the first implementation
[28].

Probably one of the most famous incremental garbage collectors is Baker’s
algorithm [4]. It is a two-space algorithm that works by copying live objects
either eagerly (when they are accessed) or lazily (by a background process)
from the from-space to the to-space, so that they are always manipulated
in the latter. When all live objects have been copied, the two spaces are
flipped. An implementation of this algorithm exists for the ResearchVM.
Baker also proposed a variation on this algorithm, called the Treadmill [5],
which removes the usually expensive two-space requirement (but requires
extra per-object space).

Another incremental algorithm is replicating garbage collection [24], pro-
posed by O’Toole and Nettles. This is a copying algorithm like Baker’s, but
where Baker’s algorithm uses a read barrier to ensure that mutator threads
observe only to-space references, replicating collection has mutators observe
only from-space pointers during collection, and uses a write barrier to apply
mutator updates (for scalar as well as reference values) to both from-space
and to-space versions of objects.

There have been several other variants of concurrent mark-sweep collec-
tion. As we have mentioned, Dijkstra et al. presented one of the earliest
forms [11]. Kung and Song added an advance in how the set of grey objects
was represented [22]. The original mostly-parallel algorithm, on which this
paper is based, was invented by Boehm et al. [6] as a way to introduce incre-
mentality in the Boehm-Demers-Weiser conservative garbage collector for C
and C++ [7]. This algorithm is described in Section 3. Doligez and Leroy
[12], and Doligez and Gonthier [13], present different aspects of an innova-
tive concurrent mark-sweep collector developed for the Concurrent CAML
Light system. This collector scans mutator threads individually, never re-
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quiring all mutator threads to be stopped simultaneously. A group at IBM
Haifa has adapted this collector design, along with modifications to support
generational collection, to the Java platform [14].

Finally, an algorithm that has been gaining popularity lately is the ma-
ture object space algorithm, usually called the train algorithm, originally
proposed by Hudson and Moss [19] and first implemented and analysed by
Seligmann and Grarup [26]. In this algorithm, the heap is split into small
regions (train cars), each of which can be collected independently (at the
cost of maintenance of inter-car remembered sets). Garbage cycles, which
can span several cars, are dealt with by the live objects being copied out of
each region into other regions, in such a way that eventually the cycle will
end up in one region and then be easily collected. An implementation of
this algorithm for the ResearchVM is under way.

7 Conclusions and Future Work

We believe that our generational mostly-concurrent algorithm improves both
mostly-concurrent collection and generational collection. The original im-
plementation of Boehm et al. was constrained by limitations of a C/C++
runtime system that effectively mandated the use of the virtual memory
system for tracking of pointer modifications. Our implementation is appro-
priate in contexts, such as Java virtual machines, providing greater control
over mutator code, allowing the use of card-table-based write barriers for
tracking pointer modifications. This offers several advantages:

• it does not rely on operating system facilities, which may not be
portable across platforms, and

• it is both more efficient than virtual-memory-based techniques, and
yields more fine-grained, accurate results.

The use of the mostly-concurrent algorithm as the older generation in a gen-
erational system also has several advantages. While generational collection
usually results in short pauses, there are still occasional long interruptions
for old-generation collections. The use of a concurrent older-generation algo-
rithm completes the generational system’s “story” on GC latency. Further,
the mostly-concurrent algorithm dovetails nicely with generational collec-
tion. Generational systems must implement a write barrier for tracking
old-to-young pointers, and this write barrier can be easily adapted to also
meet the mostly-concurrent algorithm’s requirement of tracking modified
old-generation pointers.
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Our measurements show that for programs whose promotion rates are
sufficiently low to allow a collector thread running on a separate processor
to meet its deadlines, the use of a mostly-concurrent older generation dra-
matically decreases pauses for old-generation collection. Young-generation
collection is slowed somewhat, but this slowdown can be more than offset
by the offloading of collector work to the other processor.

There are several potential areas of future work. In the system of termi-
nology we have adopted, we noted that “concurrency” (between mutator and
collector) and “parallelism” (among multiple collector threads) were orthog-
onal collector properties. We might therefore attempt to further decrease
garbage collection interruptions by making collection parallel as well as con-
current. We could parallelize the individual marking and sweeping phases;
another interesting observation is that we could overlap the sweeping phase
of one collection cycle with the marking phase of the next.
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